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0! the. three velocity components were

- analytical models of internal flows with
tiu. In addition, new analytical models
loting three dimensional rotational

the computed results and the experimental
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RESEARCH OBJECTIVES

The main objective of this research work was to investigate
viﬁn‘-bendaxy flow phenomena analytically and experimentally.
!ﬁnfiibitinlntal work was conducted to obtain measurements for
the three velocity components using Laser Doppler Velocimeter
(LDV) in 2 curved duct with inlet shear velocity profile. The purpose
of the analytical work was to develop a formulation and a
numerical procedure for the solution of internal three
dimensional- rotational flow fields.

ACCOMPLISHED WORK

Since all six technical papers, which were generated under
AFOSR sponsorship are attached in this report, only the
important contributions will be summarized here.

The first phase of the analytical work was aimed at develop-
ing a numerical computational procedure for inviscid incompressible—
rotational flow using a marching technique. The governing
egquations for the through flow velocity and vorticity components
and for the streamlike functions in the cross-sectional planes
were derived from the conservation of mass and momentum. The
numerical results were obtained for the rotational flow field
in a curved rectangular duct with constant cross sectional
area and curvature, and compared with available experimental data.
- This work was published in the AIAA Journal, Vol. 19, No. 8,

1981, pp. 993-999 (Appendix 1).
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_“‘ The next astep in the analytical work was to develop an

e ciiiptic numerical solution for internal inviscid rotational flows.
The equation of conservation of mass for three dimensional flows
wai 1dentica11y-satisfied through the definition of three two-
dimensional streamlike functions on sets of orthogonal surfaces.
An iterative procedure was developed for the numerical solution
of the governing equations for the through flow vorticity,

total pressure and streamlike fugctions. The results of the
numerical flow computations were compared with the experimental
data and with the results of other analyticﬁl studies. This work
was presented as ASME Paper No. 82-GT-242 at the 27th International
Gas Turbine Conference in London, England, April 1982, and later
published in the Journal of Engineering for Power, Vol. 105, 1983,
pPp- 530-535 (Appendix 2). The analysis was then generalized to
compressible flows in curved ducts with variable cross-sectional
area, using orthogohal curvilinear coordinates. The results of
the numerical computations were compared with the experimental
measurements in Stanitz duct. This work was presented as AIAA
Paper Number 83-0259 at the AIAA 21st Aerospace Sciences Meeting
at Reno, Nevada, January 10-13, 1983, (Apendix 3), and is
accepted for publication in the AIAA Journal.

The final phase of the analytical study was to determine the
suitability of the streamlike function vorticity formulation for
obtaining elliptic solutions for three dimensional viscous flows.
The results of the computations were presented for the three

dimensional viscous flow in a square duct.

5

RS RETERY -~ S T FILAL T AT N A T AT e T M 8T e T T T Tttt TR T T et T tet
A N T R SR G s N e e NP AT T N




e w5

sE

. i§;vcu-putcd results were found in agreement with the experimentally
measured through flow velocity profiles.
H;clliptic influence was reflected in the computed axial and cross
" velocity components upstream of the duct inlet.

_Advances in Numerical Methods in Fluids Volume III on Computational

In addition the viscous

This work was
presented as AIAA Paper No. 84-1633, at the AIAA 17th PFluid Dynamics,
Plasma Dynamics and Lasers Conference at Snowmass, Colorado
June 25-2?. 1984 (Appendix 4). It will also appear in Recent
Methods in Viscous Flows, Pineridge Press, 1984, (Appendix 5).

Tﬁo experimental work was conducted to cbhtain measurements
of the three velocity components of the flow in a curved rectangular
duct, using Laser Doppler Velocimgter. A nearly linear inlet
shear velocity profile was produced using a grid of parallel
wires with variable spacing, resulting in secondary velocities
as high as 25% of the mean inlet velocity. This work was
presented as AIMA Paper No. 84-1601 at the AIAA 17th Fluid  _ .—
Dynamics, Plasma Dynamics and Lasers Conference at Snowmass,

Colorado, June 25-27, 1984 (Appendix 6).
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SUMMARY OF SIGNIFICANT RESULTS

ZiiPTUD formulations were developed for modeling inviscid three—~
dimensional rotational flow fields in curved passages. The first,
for a very efficient marching solution with h&perbolic equations

% governing the development of through flow velocity and vorticity

: profiles along the duct. In the second formulation, a new approach

was developed ta‘satisfy the conservation of mass in three dimen-

sional flows by defining two dimensional streamlike functions on

s UM

fixed orthogonal surfaces in the flow fie{g;;,rhe first formulation

/”"lcnds to a faster numerical “solution in which the influence of

the pressure field on the three dimensional flow can be sensed

P 5_14.' [N te v

upstream only through the curvilinear coordinate system. The
second formulation on the other hand is more complex since it
models the elliptic influence of the three dimensional pressure
field. Computer time savings are realized through the two

Gl

dimensionality of the equations for the streamlike functions and
their Dirichlet boundary conditions. Agreement between the - )

B ATRE

computed results and the experimental data was very good in both
cases.

”'~E> The streamlike function vorticity formulation was also
tested for its ability to model viscous flow effects and their

e e - e

o i

elliptic influence in a square duct.”~ The viscous elliptic’
solution predicted the influence of the duct on the flow field
upstream of the inlet. 1In addition, the computed results were

in very good agreement with the experimentally measured through
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\ B otthc three velocity components,
a mqullr duct with an inlet shear

4 to v‘li@td both viscous and inviscid
ee dimensional flow fields with strong

' condary flow velocities due to inlet
Wxtim. A qrid of wires with variable
nm:ly linear inlet velocity profile.
‘ Wot uqn&tudcl up to 25% of the mean
mmted in the curved duct.
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INICAL APPLICATIONS
dtta for the three velocity components in

- p—

‘internal flow. In addition, the presented
wcln be used in both _inviscid and viscous three

‘_‘:-: nw computations to model the various secondary flow
‘: sws in turbomachines. ‘
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Inviscid Solution for the Secondary Flow in

Curved Ducts
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. Inviackd Solution for the Secondary Flow in Curved Ducts

AT L S. Abdalleh® and A. Hamed?
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T puge gresats so enalytion) fesmsintion snd ¢ sumeviosl selution for threo-dimsnsionsl rosssionsd flow
Jouvel dusts. Yhe fanmataiion b bused on enleuliting the Greagh Sow verticlty aud veloslly compensnts
s o e equation, esing & Sarbing teshuigue. The ssssndary velosiiies are detormined foom the

nitiilhe Sunstion Sevwilufion inte o single Pelen equation with Divishist boundary conditiens. A
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A first-order estimats of the streamwise vorticity

s ) 4 wconditions at the duct inlet
S - :
latsoduction
STREAMWISE verticy is kmown to dewelop in
ensondu and bends through the turaing of sheariag flow,

sppronimetions wually have boen iavoived in the spplicstion 0% the other hand used Wu's technique'2 on two families of AIGN
of Howmthorne’s eqguasion for the streamwise vorticity stream surfacss. On these surfaces the inviscid flow governing -';'-5'-:;7-
eadeulation. squations are combined to obtain Poisson type equations. The RGNERTRS
stream surfaces in this case are skewed and warped because of DSy

the streamwise vorticity. This analysis was used successfully :,'sj-:

S ()

R *“Crafusse Ressurch Assistant, Dept. of Asrospace Enginesring This paper presents a new analytical formulation and an
Applied Mushanies. Menber AIA? and efficient numerical technique for the solution of the
FL *Piofaer, Dept. of Asrospace Enginesring and Applied rotational flow in curved ducts. Through cross dif-
Sdushaniss. Mumber AAA. ferentiation, the pressure terms are cancelled from the
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In the preceding equations u, v, and w are the velocity
componsats in the 7, 6, and £ directions, respectively, and Pis
the total pressure divided by the density. The total pressure is
dliminated from Eqs. (1-3) using cross differentiation. The
resulting equations that are solved for § and v are

N ok K _(1te )k i s
& r¥ & \r¥ /¥ r¥

st w e GH-Df ©

2o a2 UG- T

DG
ARG

(Dl i m

‘The reader is referred to the Appendix for the derivation of
Eqs. (O) and (7).

Initial end Boundary Conditions

Referring to Fig. 1, the following initial and boundery
conditions are used

'(’.0.1) =y, (‘)
§(r.02)=0 ®
MRAD=0 - T TR
LAl
"(ro.oa) -0 (ll.) -_: '-‘.i ‘
-("’um /) (l !b) ‘.'... -
N e N
Bquations (4-7) with the boundary conditions Egs. (8-11) T e
form a closed system that is solved for the variables u, v, w, QAR

and §.

® v I M 7 4
(Frfﬂ) e ( The streamlike function formulation'é is used for the
%ﬂmu.&mmﬁ;htubo;:’a?
1w W o v I\ 10P conditions Egs. (1 (11). The method of solving Egs. (4)
- an wam gl @ oo v | @y - - and (5) for the velocity components & and w will be briefly
r ") .(" ’r "') r outlined here. More details about this method can be found in
Ref. 14. Equations (4) and (5) are first rewritten in the

-

8

) 1w o\ WP f form:
—GE-w)w oo O
Li & dv
. v ;(m)+;(m)---§ 12)
© - Contiaulty equuion: and *
' o s 1l v -2
AT A @ a =t 3
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" SONA7USONFOR TIE SECONDARY FLOW IN CURVED DUCTS 9s

% Guliued %0 smtisfy B (12)©  The boundary cokditions, Bqs. (10) and (11) are rewrittes in
u and w interms of x are terms of the streamiike function x as follows:

x(Rp2) =C

(172)

Ry N
x(l..z)-L L-g-w-o-c (1) ==9--‘-

x(r.0) nx(r.H) =C a9

e Bquition (16) is soived using the S.0.R. method, with the”
' o boundery conditions Bee. (17) and (18). In the numerical
""'""L""' (19 sohwicn the lnigras n Bas. (14, (16} und (IT0) are

important integrsl
this system of ecruations (6), (7), and (16). The first integral

[, waceg

where A is the duct cross-sectional area and Q is the volume

6.2

21.0 n/sec
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Fig. 4 Secondary vorticity and velacities at # = 30 deg; 2) secondary
g3 Veloehty contours a2 §= 30 deg. verticity, b) secondary velecities.
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were used in the normalization. The numerical com|

is

$, and 7, respectively, It can be seen from

and the maximum

h

The results are presented in the form of velocity and
were parailel and horizontal at inlet, is very significant in the

these figures that the rotation of the velocity contours,

11x 11 x4S grid.

shown in Figs. 3
VRN AN A D T LT Yo P

M

§

15

inlet velocity were carried out in double precision on the AMDAHL 470.
with the

of the present The results presented here were generated using an

data of Ref. 1S is

duct geometry and dimensions inner radius R,

- SORIITION FOR THE SBOCONDARY FLOW IN CURVED DUCTS
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9% 8x 1S grid. Roscoe™ used an 88 x 16 grid to obtain his
sohstion, and reported a CPU time of 530 s on CDC 7600. In
the present analysis, the CPU time was 20 3 on AMDAHL 470
V/6-11 using an 11 x 11 % 4S grid in the aumerical solution. R

Conclusion R
The present snalysis of internal rotational flows leads to a ;-.'.:-’-_i'-;,}:

comparison of the computed results with the experimen
data, it can be concluded that the physics of the secondary
flow probiem are well represented in the analysis. The present
formulation can be adapted with some modifications to
variable area ducts and turbomachinery passages. -

Appendix
Derivation of Eg. (O DR
Differentiating Eq. (1) with respact to z and Eq. (3) with ®
respect to r and subtracting, "ne obtains MCRIOR R
of L3 m dw\ sldw N
o w et ar(rao x
_..‘_(1‘1-2 -!'_("_' ]
\r &/ 2\& r r s
FERARARLY
/v v I PO
vm(E+i-iw)= an I
e
the divergence of the vorticity vector is identicaily equal to 14‘:-‘.::_‘{-"
2er0. This can be expressed in terms of «, v, and w and § as it
follows: -9
: 'I ‘f ]
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| The Elliptic Solution of the
~ s.aama | Secondary Flow Probiem

: This paper presents the elliptic solution of the inviscid incompressible secondary
R a-e::n. pi JSlow in curved palseges. The three-dimensio. el flow field is synthesized between 3
% N 80¢s of orthogonal nonstresm surfaces. The two-dimensional flow fieid on each set
i : of surface is considered 10 be resuiting from a source/sink distribution. The

af these sources are dependent on the veriation in the flow

strength
properties normel (0 the surfaces. The dependent variables in this formuiation are
the velocity components, the totel pressure, and the main flow vorticity component.

in terms of these dependent variables are solved on each

The governing eguations
Univershy of Cinainnetl, Jamily of surfaces using the streamlike function formulation. A new mechanism is

b2 B o exchenge information between the solutions on the three family
Mom. ABME - surfaces, resuiting into & unique solution. In addition, the boundary conditions for
the resuliting systems of equations are carefully chosen 10 insure the existence and

! : migueness of the solution. The numerical results obtained for the rotational in-
: ~ wiscid flow in a cwrved duct are discussed and compared with the available ex-

+ ) perimentel dats.

these two families of surfaces is iavolved. Many investigators
have sppiied Wu's theory to obtain solution on the S; or S,
surfaess. Two techniques have besn weed in these studies;
samely, the meiris method and the stressuline curvature
m%mp.q.mw.mum-
Shatront (0], snd Binlaris (7). used the matrix method to
obiln solutions oo the S; aad S; swrfaces. Katsanis
dowiloped compuser programs for & meridionsl solution {3]
sl tlee flov sebution on & blade-to-blads sacface of revolution
. whih & tebe thickaes proportional to the blade heigit. In
sud (), & representative mass sveraged S, stream surface
, aﬂ.& serfaces are generated by rotating the
the $; surface sbout the axis of revolution.
The swenmiine carvature method hes besn wsed by
m»-ummammm.’
mr—dmnuamuw
. oosibutm AGIE theatysamms Desamber 18, 1981. Paper No. 82-0T-242,
19

Wilkinson [8] to obtain biade-to-blade solutions. The same
method, has also been used by Novak and Hearshy (9] and by
Katsanis [10, 11) to obtain meridional and blade-to-blade
solutions. The assumptions and approximations used for the
stream surface shape and stream filament thickness
distribution in the S; and §; solution using this method are
mainly similar to those discussed previously in connection
with the matrix method. . -

Several problems are encountered in computing a syn-
thesized three-dimensional turbomachine flow field from the
solutions on the S; and S, surfaces. These probiems are
related to the exchanged information between the two
solutions, concerning the stream surface shape and the stream
filament thickness. Novak and Hearshy [9) pointed out that
the S, filament thickness, as calculated from the blade-to-
blade solution, is not constant upstream and downstream of
the blade row. This is in contradiction with the requirement
that the flow must be treated as axisymmetric in these regions.
They also discussed the effect of the lean of the S; mean
stream surface extending upstream and downstream of the
blades, where the net angular momentum changes must be
. Stuart and Hetherington (12] tried to use a technique
ilar to Wu's in their solution for rotational flow in a 90-
bend, by synthesizing the three-dimensional flow fieid
he iterations between two-dimensional solutions.
were unable to reach convergence in the iterative
umerical solution and had to abandon this approach. They
speculated that the information conveyed between the two
solutions was not sufficient to produce convergence.

The assumption that the S, stream surface is a body of
revolution was common in all applications of Wu’s theory in
turbomachines [2-12]. This assumption is valid if the flow is
jrrotational. In general, the S, surface is twisted and skewed
dus to the presence of the secondary velocities. These

1
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Appendix 2

The Elliptic 801§tion of the Secondary
Plow Problem
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K transverse velocities exist due to the streamwise vorticity  streamlike functions. Downstream, the derivatives of the flow
b which is generated by the turning of a nonuniform flow witha  properties in the throughflow direction is set to zero, A
> vorticity component in the curvature plane (13, I4]. The Poisson type equation with Neumann boundary conditions is
£ nonuniformities of inlet velocities in turbomachines are derived and solved for the static pressure at the inlet plane,
w aasociated with the hub and the tip boundary layers. Stream  which is then used together with the inlet velocity profile to
surface warpage pose additional mathematical difficulties in  determine the inlet total pressure profile.
Y the solution of the rotational flow. Fagan [15] could not Numerical resutls are obtained for the case of rotational
EN Mnls'ohnionforhishlymﬁondﬂowinmeddws flow in 8 curved duct with rectangular cross sections. The
D) using Wu's approach. He resoived the problems encountered  results are discussed and compared with the experimental
it when the stream surfaces warpage approaches 90 deg through  data.
T wﬁcﬂ;zwm«mmmmnmua
ey rate.
In reference [16], Abdallah and Hamed developed an of-  Viothematical Formulation
7o fective method for the solution of three-dimensional  For simplicity and to be able to compare with existing
§j“ rotational flow in curved ducts, in which the throughflow experimental resuts -in ducts [19), the cylindrical polar
& velocity and vorticity components were computed using a  coordinates are used in tD!e following presentation. The basic
X1 marching technique in the main flow direction. This led to a  eQuations for nonviscous incompressible flow are expressed in
3 very efficient numerical solution whose results compared , terms of the three velocity components, the total pressure and
. gmerw, b:::ae the experimental data for duct flows. thethroughflow vorticity components as follows:
. of the marching technique used in com-  Congervation of
N puting the through flow velocity, the influence of the ° nlm; { 3 @
downstream conditions on the flow characteristics is not ——t+— 2+ T e m
. model‘:q?hu eiffect. althoi:;h not significant in duct flow, r or r 0 &
5] may e important turbomachinery applications. Conservation of r-di
- Barber and Langston [17] contrasted the blade row and duct ° "au"’""m"'” in r-direction
flow problems and discussed the importance of the elliptic [+L-L X m?
N solrn'tli;nvto the flow in blade rows. . o r r 30 or
-, investigation represents an elliptic solution for the Conservation in z-direct
ok internal nonviscous incompressible rotational flow in curved of momeatum in 2 fon
e passages. The streamlike function method, which was ug—of L2 _ ."_"] = F @)
developed by the authors [18] for the ::lt;icient :‘u‘:netie?l r 3 az az
" solution of the continuity and rotationality equations is where P is the total pressure divided by the density, and
~ implemented in the present probiem formulation. The (u,u,w) are the three veiocity components in (r,8,z)-directions.
dependent variables in this formulation are the three Tne throughflow vorticity component, £, can be written in
-, streamlike functions, the total pressure, and the throughflow terms of the cross velocities, u and w, as follows
vorticity component. The equations of motion are satisfied on a 3 .
oA three arbitrary sets of orthogonal surfaces. On these surfaces, t= qu _aw @
> two-dimensional Poisson equations are derived, for the z o
"y streamlike functions, with source terms representing the flow "
= three-dimensionality. The source terms are dependent upon Bernouili’s Equation. .
the variation of the flow properties in the direction normal to Bernoulli’s equation is used instead of the momentum
- these surfaces. Because of the dependency of the solution on  equation in the 6-direction.
o each set of surfaces on the solutions for the remaining two sets P v P P
N of surfaces, an iterative process is involved in the solution. Ut~ —+w—=0 . . (9
The three flow velocity components are determined by the o r ¥ oz
source terms and the three streamlike function derivatives. Imbol
K. The total pressure and through flow vorticity are computed H iz Equation.
» from Bernoulli and Heimholtz equations, respectively. L vk, a
o, The initial and boundary conditions for a closed systemof dr r 30 4z
v: equations are carefully chosen to insure the existence and
7 uniqueness of the solution. The no-flux cordition at the solid ag G ER 2L - ©)
.-;‘ boundaries leads to Dirichlet boundary conditions for the ar r oz r
.,‘ﬂ
. Nomenclature
L
o A = duct cross-sectional
o, area r;,2, = arbitrary integration :
o C = contour enclosing A reference points on the component in @
! dC = incremental distance r- and z-coordinates, direction .
- along C respectively (Ar,A9,Az) = space increments in
. n = outward normal to the . §,5; = blade-to-blade and (r,0,2) directions
o contour, C meridional stream
:.;j P = total pressure divided surfaces, respectively ~ Subscripts
oy by the density (u,v,w) = velocity components h = horizontal surfaces
) P, = inlet static pressure in (r,0,2) directions, I = inlet conditions
'~ divided by the density respectively v = vertical surfaces
o (r.02) = cylindrical polar x = streamlike function ¢ = cross-sectional sur-
] coordinates ¢ = main flow vorticity faces
o,
L
(e, . . Joumal of Enginesring for Power 20 JULY 1983, Vol. 105/ 531
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i theus 30ts of orthogonsl in Fig.

1, %o idantieally stiefy the principal of conssivation of mass,
given by squation (1). '

The streamiiks function, x,, is defined on the horizontal

surfues 25 Fellows :

Lot e oo

‘—:‘-". )

wheve 7, is the radial coordinate of an arbitrary integration

)

e A ;
SRR S

. where g, is the anial coordinate of an srbitrary integration
reforences surface. 31P'+lﬁ+azp'-¢ - (16)
The streamiike fuaction, x., is defined on the cross planes E LI T
s follows N where
o 1(° v,
—mag b —| r—dr (9a) _e_ -li"_ ﬁ _i 1?:
& rin & "'ar[ rw "'r] az[r %
o %, (* L2 1 2
prken-f Tgema  on vo(F-7% ‘
:.m ¢, refers Wt:m on lh_ w“h‘h.folh:];'bo:and.rycond‘m
The governing equations for stream functions are —_ - -
, by aubetitating equations (7e,0) into equation (2), a7 "7 R','R' e
\:.\:‘ O
. SERIVOA 108, JULY 1983 21 Transactions of the ASME PN
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The elliptic equations (10), (11), and (12) are solved on the
horizontal, vertical, and cross-sectional surfaces for x,, x,
and x., respectively. The solution on one set of surfaces is
influenced by the solutions on the other two sets of surfaces
theough the source terms. Consequently, an iterative process
between the three families of surfaces is involved. The three-
dimensional solution is obtained by adding the computed
velocity components in each of the solutions as follows

(ruy)de+ [ 20 _ 2% (12)

CMmYy + Y, (13q)
vsy, +0, (13d)
waw,+w, (13c)

It can be essily shown that the velocity components as -
determined by equation (13) represent a unique solution.

Boundary Counditions. The inlet conditions for § and P are
given by
(14

as

where P, is the inlet static pressure divided by the density. The
static pressure distribution at the duct inlet cross section is
computed from the numerical solution of the following

equation

£=0
1
Pup,+ 30’

A RS




.4 %-o ® reR,.R,,

(199)

Qle)
o=y - @1d)

w=l 1¢)
”’ = R'.R.

a0 22)
Mz=OH

wa0 @3

. A et .

-:- -:-‘0 (24a)

] w

7@ @

-:. %’-o ;)

In adiition, the following condition is used to uniquely
dwwiee gy, x.. a0d x,:

and equations (13), to obtain the following bowndary con-
ditions for x,, %, and x,. The reference surfaces

for the integrals ia equations (7-9) are chosen here to be
represented by 7, = R, and 2, = 0, respectively.
At fnint
=0 r ]
Xa=— ; v, dr 6d)
1 & ’
TN "R ."r* @6c)
Mr.R‘
Xa=0 Q%)
X =0 Q)
o x
> +-r--° 27%)
Mr.k,
..
XA"L,W" 280)
X =0 Qsd)
e . X V(%
L 4 +—.‘ES.‘ "& mc)
Atz=OH
=0 (29»)
X =0 (290)
a
-&--0 @9¢)
At exit
1 ¥
73_'...o (30s)
! ax.
77’..0 (300)
1 ax, .
.’_..a....o .. - .(30c)

The governing equations (5), (6), (10), (11) and (12) with the
conditions given by equations (14), (15), and (26-30) form a
mmwhichiuolved for the variables xas Xes Xo» &

Results and Discussions

The results of the computations of the secondary flow in
curved ducts caused by total pressure inlet distortion are
presented. The iterative solution procedure is based on the use
of successive over relaxation method for the solution of the
three streamlike function equations, and Lax's [20) marching
scheme for the total pressure and through flow vorticity
equations. The results are presented and compared with the

measurements of Joy [19] for the flow in a
curved duct with constant curvature and rectangular cross
section. Joy [19] obtained flow measurements in a curved
rectangular duct of 0.125 x 0.25-m (5 x 10-in.) cross section,
0.375-m (15-in.) mean radius, and 90 deg turning angle. A
large velocity gradient was produced in the experiment using
screens placed before the curved portion of the duct, which
resulted in a nearly symmetrical vefocity profile at inlet to the

e

%+.t.'.+.".‘_:_+2&.o 25 bend. The velocity contours in the lower half of the duct are
S shown in Fig. 2. The computations were carried out in the
w 1-29) are weed together with equations (7-9)  lower half of the duct to take advantage of the symmetry. The
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22 JULY 1983, Vol 105/5633 NN

RN TOx . ., . R
“n,ii‘il.-ﬂ A " v : A R e L g T S F..iF
AN N A 'ﬁﬁ,’,\ﬂn'hﬁfbﬁsﬁ'ﬁf‘!\"lﬂfﬂ'.C~'.'_"'C~.‘:-‘:-':&'1’-'}-r'_".0.'a



Hﬂ
o
Ei‘
|
+1
i
I

G I i A Bt A I W % A Dy R T Ve Al B g WL L L Y

Sl v e e

®) Exporimontal dots J19)
4 Veloolly contours st ¢ = 00 dog

1 77

o

@) Compuied resuits ) Experimental date |19
Fig.5 Velookty contours st ¢ = 00 deg

TH
iii J
iy |
ik
i
fijl
i

|
|
H
i
ifit

2
i
%
z

E
:
|
|
%

|
i
E
E
|

I
-]
It
iy

i
i
15l

;}
|
}
H

&
3
i
z
%

il
i
i
:
5
]
:

i
i
|
gi
:f

i
{
|
?
|

HuK
%igpzé
gbi {igi
35§§a§E;
{hil
il

,
H
§.

994/ Vol, 108, JULY 1989 23

RN A A AT NI ’ MG
RN g S » 'F

r !‘

7\ W

.8=0 [

C )l
)
Fig.¢ s;';:mmmm - o.a;.;o’:nna.

CPU time through changing the number of iterations in the
solution of Poisson’s equations with the outer iteration cycles,
or to reduce the CPU time through the use of noniterative
methods |21, 22] in the code. At present, direct Poisson
solvers codes are being studied for incorporation into the
numerical solution. This is expected to lead to considerable
CPU time savings when it is combined with the streamlike
function formulation and its corresponding Dirichlet
boundary conditions.

Conclusions

1t can be concluded that the present analysis can predict the
inviscid secondary flow development caused by inlet totai
pressure distortion and the resuits of the computations
compare with the experimental measurements. Through the
elliptic solution, the influence of the downstream conditions

Transactions of the ASME

W 71

A

..... (R ES R R R AN S IR TS FA LA RS L e B
X ..!-:~.~\-g\.-\. _'.\-- AP TRRRGN > N

R LN T L NAr TV

P

gt !
o
& 4
2

v
5o
o,
o

NIV
SRR
T

4
A
)

2%

[}
4
[
.
v

AN




<
‘B
i

[
. 7 Bialaris, 8., *“The Colicuintion of the Quasi-Thres-Dismensicns) Flow is
uwguhs"un-uo-—nmmm.
1979, pp.
§ Wilkinsen, D. H., “Colssintion of Blade-t0-Blade Fiow ia Twr-
m*m*mn—uc.—am
R !Nﬂ&.l.&.dm I.ll.."AN-bmll-
wablads Computing System for Twrbemachinery,” ASME, Jownel of Fuids
Engingering, Mus. 1977, 9p. 154-166,
10 Kstsenls, 7., *Portan for Tvansoaic Velocities cn

Bquations, Machenics,
W-nl.m-ﬂ. 1974, pp. 135-133.
‘13 Hawthore, W. R., “Sesondary Circulation in Fiuld Flow,” Prec. Rey.
——— u.a.vu.m.nm.p.m
’ 14 Squive, H. B., aad Wimer, K. ., *"The Secsudary Flow in & Coscads of
12 1% 18 Alrfolls in & Nonusiferm Stream,** Journal of Asrensusicsl Sciencs, Yol. 18,

3 i
~

1951, pp. 247-274.
i . s FEm L e b I B e
Mg.7  Typisal ewer vasiolion for v, solulions 1 muumuwuﬂ-hﬂ-“

: ?‘. a:'- i nchuded. The solstion i very effcent due to fn Coeved [y "':"'3: Al m‘*‘{‘f‘;mmm o
: : interaction 16 Hamed, A., and Abdallah, 8., “Stresmilhe Punction: A New Conoept ln*
, ""‘"‘*mm,,m i m”g"m”“ n-z.r‘i’m N Soeat f Aber, VL 16, No. 13, Dec. 1979,

orthogonal surfaces. 19 Joy, W., “Bxpwissentel of Suar Plow i Rectanguler
Dends,” M.S. theols; Massachasens instiune of Technelegy, !
Acknovisdpuent : 20 Lax, P. D., “Wesk Sobations of Nonlinear Ms:-u
o ; ) Their Numerical Computstion,’”” Comwumications on Applind
This research was sponsored by the U.S. Air Force Office  agaamencs, Vol. 7, 1954, pp. 199-199.
of Sclentific Ressarch under contract No. 30-0242. zl ln-.n n..unwwammm
' with Rectsaguler Crom " CURD/A-Turbo/TR 95,--
Pefovonces umummdmnm :
: 22 Dorr, P. W., *The Dicect Solution of the Discrete Poleson Bquation on
W, C. K., “A General Theory of Thees Dimensions! Flow in Subsonic  Rectangle,” SIAM Review, Vol. 12, No. 2, Mar. 1970, pp. 248-263.

1
and Supersenies Turbemachine of Axiel, Radial snd Mined-Fiow Typm," 23 Swest, R. A, “A Cyclic Reduction Algorithm for Solving Block
Tridiagonal Systems of Arbitrary Dimension,”* SIAAC Journel on Numericel

2 Munh, 1., “A Dighal Compusar Program for the Through Flow Pluid  Anslysls, Vol. 14, No. 4, Sept. 1977, pp. 706-720.

aTpe"wr got

v e

JULY 1983, Vol. 1oa 1838

X Nt A
".a‘ :’j}."l’#‘!.ﬁ":’*\ L ot l LB

L2 r ’ ° oy
’ :’f. J:'CE.’. -’, N RN




o N P o e ey i R e B s e by Mg m e PN AT

Appendix 3

Three Dimensional Rotational Compressible
Flow Solution in Variable Area Channels
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TEREE-DIMENSIONAL ROTATIONAL COMPRESSIBLE FLOW SOLUTION
IN VARIABLE AREA CHANNELS'

[
A. n-.d' and C. Liu *
ineering and Applied Mechanics
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Cincinnati, Ohio 435221

Department of Eng
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This paper pressnts ytical
a and agmricel solution of com=
g flow in a
area duot. The dimensional
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vorticity components
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cross sectional
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inlet
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reference point
vertical

Introduction

Recent developments of computational
methods for three dimensional flows in
turbomachine blade passages and curved ducts
include both viscous and mufzg flow
models. The parabolic methodst+¢ were
first developed for the solution of internal
viscous flows. These methods are based on
the assumption of the small influence of
the downstream pressure f£ield on the up~
;u-boxfwu' Vions. the uee of

e equations. use o

technigques leads to a very effi-
cient solution but it also limits its
application to flow n*dugu w:l..t:o ﬁld
cmntus. Later partially par c
nethods oA were developed in which the
diffusion of mass, momentum and energy in
the streamwise direction were still neglected
but the elliptic influence was transmitted
upstrean through the pressure field.

Wumerical methods have also been
for the solution of inviscid

flows . The used in the
numerical solution are considerably dif~
fezent depending on the flow model and the
problem formulation, BRarlier ~three
dimensional methods3-8 consisted of an
interactive procedure between two dimen-
sional flow solutions on blade to blade and
hub to tip stream surfaces. These efficient
two dimensional solvers allowed Sof arbi-
trarily superimposed loss models? 10 put
for most of the solutions, the blade to
blade stream l\_as ace wag taken as a surface
of revolution® 9. The attempts to extend . —
these uthgga to rotational flow were not
successful’! bacause the stream surfaces

becoms twisted and warped. It was found

- that the iterative procedure between the

two solutions does not converge in this
case through the exchanged information
during iterations in the form of stream
surface shape and stream filament thickness.
Tine dependent techniques have been devel-
oped for the solﬁigg of three dimensional
rotational flowslé. and were used in flow
field calculationsl4, aside from the Fioe
dependent technique, two other methodsis/16
were developed for the sclution of®internal

* This research was supported by the Air Porce Office of Scientific Research, under
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a_ very u-plcuodcl for
> tznpluc flow fields by .
- Grmm into irro-
rts.  They used

for thia special class of pro-
whioh the rothalpy and entropy -

; are otthogpul to the votuc!.ty

allah snd memest® a a
Yo thonlpt solution of three
al rotational incompressible
a&lﬁletd flow in which the velocity vector
_is synthegized from two dimensi solue- |
tiqus of m.- streamlike functions on :
three sets of rieTy o , surfaces. Asido .
. m W‘ s+ 0o additiona i
wags imposed that might unie i
"t asalysis to a special class of pro-
 blemm. The present work represents an
extension of that analysis to eo-puuiblo
flow fields with generalized chamnel :
gecmetries using orthogonal curvilinear
bedy fitted coordinates. The probiem for-.
salasion leads to a very efficient solution
s geverning egquations for the
functions consist of Poisson's
with Dirichlet condi~
while the governing ognti.ou for
total enthalpy and stream-
are hypcrbouc. The con-
of s three-dimensional solution
ud does not suffer from
encountared with the tradi-
~thre¢-dimensional methods in
the M of streamwise vorticity. :

i

Analysis

The goveraing tions used in the
sumericsl solution of the compressible
three 4imansional hvuctd rotational
inteznal flow are derived from the basic
eguations of conservation of mass momentum
and energy in or 1 curvilinear body

fittead coordinates.

btolie eguations are derived for the
through flew vorticity, the total enthalpy,
while elliptic equations are derived for
three sets of streamlike functions which
are defined on fixed orthogonal surfaces.
The details of the analysis for incompres-
sible flow can be found in reference 16.

Ia the following derivations, the same
muh is applied to compressible flow
orthogonal curvilinear coordinates.

The Stremmlike Punction Pormulation

The tion of conservation of mass
for compressidble flow in curvilinear
coocdinates is qivca by

(h,h,ovl) + 3-:—2- “‘1"3""2’

]
+ 3;-3- (hlhzova) = 0

A

(1)

wheze V,, V, and V, are the velocity com- :
ponents in the directions of the x;, x,, X4
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In the analysis, hyper-
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coordinates, respectively, p is the flow
density and hl' hz. l't3 are the metric coef-

ficients of the orthogonal curvilinesar
coordinates.

The equation of conservation of mass
:I.- identically satisfied through the

definition of three streamlike functions}?
Aps Xy and S The streamlike function Xp

is defined such that its derivatives on the
surface. :; = constant are related to the

two velocity components vm. Vo, 28 follows:

D3 g = hyhae v

. X, 3% 173° Yan

i 2

) + ’!‘ =; (hyhooV, ) dx, (2a)
2r

and
; g‘i" "‘th) == “2“3" vlh (2b)

1

The 1ollowing definition of the second
streamlike function x, is given in terms
of its derivatives on the surface x, = con-
stant: 2

3
T (BaXy) = - ByRaeVyy
i xs
? I B ghgevyy axy Ga) 53
and *ar DIRCA
POAEND
' T
2 L e
=, (hoxy) = BahgyoVyy (3b) f._.__:g.’,—.

The third streamlike function x is similar~
ly defined as follows: . -

2
a; (aXe) = = ByRyeVae

x
2
3
+,{ 5;; (hlthvw) dxz (4a)
. 2r
and
]
3, Maxe) = MhaVae
X
3,
- ’{3 -5;; (hlhjﬂvzh) de (4b)
r

The integrals on the right hand sides of
equations (2) through (4) represent source
terms which are dependent upon the flow
crossing the three sets of fixed orthogonal
surfaces. The superposition of the velo~
¢ity components in the above streamlike
function definitions gives the three gas
velocity components Vi v2 and VJ. which

identically satisfy the conservation of
mass equation (1)

St ot e,
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!

meg : n

Bavxd (®)

;cuu-—m:mru
th-o&ym is

it asalysis the momeatum equatica is |

(10)

nvm.g equation can also be derived
throwgh flow vorticity dsvelopment

for the
trom tho mossatum oqutm

3h
$.0 (—)-gawl -“- "3 (91202V)

" }h
+ Q,v,-2.v,)
PRB, 3%, T173731

&)

e i
(11).

Taptesents. the x, Componeat of Melehelts
component of Ne ts

eyeation which oln be written in the.

felloving form for inviscid compressible

.‘%0',00

@
.
<
-
N

1 1
3 Vx(; w) {(12)

-In the above equations nl. n.‘. and n, are

‘»qnluono (2) through (S) into the %, and x4

‘components of
‘component of equation (8) respectivel?.

b A e A N T AT IR TPY T B o TR g M S e L S e e

three vorticity components which can be
expressed in terms of the velocity deri~
vatives from the definition of the vorticity
vector (equation 8).

The elliptic governing equations for
ehc streamlike functions Xpe Xy and Xg Gan

be obtained from the substitution of
equation (9) and the x}

b i e o+ B ek Bt
Xy MRy ¥ ) X; hplh; 9%,

= hyhy% (13)

r- ‘rr r‘"‘zxv” 3 ‘rr r"“‘zxv”

- "1"3"1 (14)

2_ (32 (hyx )]+ (22 (hyx_)]
X3 By, T3 1%’ T 3xy R\ Ry 9%y 1Xe

o
A . -
HE 3
. "
b
’, o
o~ q
. T
T
it}
»

= g, (15)
v-;‘.f‘,-"": .;:
where IR
2 -3-';3;‘5,?; d
v ] P RS AR,
g, = - 1 + - - v.0,1] BLDK YN
h s- 2 82 2 F:q 31 v\i-‘é:‘m
tas " % et
v v ]
22 1 3p
+ - L R
Ry 3%, © By 7% -
1 ? ?
h, *2 a(ph,h )
S N I 1 2V3v ax.1
k)R, 3%, 'RR; Xy 2
{16a)
and
o, V& aH 2
% = 07 7R ux; ¢ BPR; Bt V2!
v v
33 13
TR TR
e (ohV. )+ E— i (ph V. )
Fh"135'a'£; 1'1h ETIBE-].- 373
X
_ 1 a[hJ 33(phh32h) ol
kR, 3% 'Rk, X3 3%y 3
{16b)
and
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[ A ]

L M ) N
% " ot o (g-"-z- (ph3Vy,) - ok (vhaVap)l
(ohyhaVyy) dx,)
3

BT T
LT

=
3 ‘”,lhzv:v) dax,]

+hyY, 5‘% bV 5x
The amalytical formulation results in.
twa~dinensiosal Poisson’s equations for !
the ‘stressiike fumctions.
are obtained from satisfying the equations'
of setion on three sets of orthogonal ;

sarfacee sented by constant values
o!moo:mu-x‘. %, and x, as shown .

(16¢c)
3

::' Pig. 1. The source term in eh:h:uul.e-"
i eguations are t upon .
variation of the flow p. ies and on

the flux ia the direction normal to these
surfaces. An iterative procedure is used
in the mmmerical solution because of the
dependency of the source term in each set
of streamlike function equations on the i
:::ﬂm obtained for the remaining two

i The iterative procedure for the numer-
ical computations eorzisu of the use of
[ ! eochntz\- in the solution of
eguations (7), (10) and (11) along the
flow direction x,, and a successive
over relaxation method the solution of .
M ~ the two dimensional elliptic equations
PR (13}, (14) and (15) for the streamlike .
e functions. The flow density, which is '
allowed to lag one iteration in the numeri-~
cal computations is determined from the :
local total pressure, total stagnation
enthalpy, and from the flow velocity:

ve, (1/y=1)
ml

o= P (1~ an

The boundary conditions for the streamlike’
functions are carefully chosen fe insure
the uniqueness of the solution. Dirichlet
boundary conditions are determined for the
streaml functions from the roquhi’unt
of sero flux at the duct boundariesd’ The .
% derivatives of the flow velocities are

set 1 to zero at the duct exit, while
the Dirichlet boundary conditions for the
streamlike functions at x, = 0, are
ssed in terms of intdgrals of the
i flux. The total pressure, total
ature and through flow vorticity
profiles are required at the duct inlet
to start the marching solution. More
details about the numerical procedure can
be found in reference 16.
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. incompressible two dimensional analysis to

parison with results of the nunﬁcﬁ
"analysis by other investigators.:”¢

‘to investigate the effects of secondary
‘were generated using perforated plates of

-different heights as spoilers.
.shows the duct geometry and the computation-~

These equations:
‘t0 symmet

X3¢ X3 and x, directions, respectively.
i
‘which were used in the numerical calculations
‘with no variation in the x; direction.
‘spoiller which were obtained half way be~
' the computations are presented in non-
dimensional form in Pigs. 4 through 8.

_to the maximum inlet velocity,

. to a tank gauge pressure of 20 inches
“water in the experimental weasurements.

' f£itted coordinates for the flow computations
- ware generated nmssleany using the code
. Schwartz-Kristoffel transformation.
~in the xaidireceion and 0 and 6.791 in the

‘uniform in the x, direction where half the
- duct height is

" the computed static pressure coefficient

_ reported by Stanitz et al

" over the duct curved boundaries at two

.'* Ml Mag

Ca 3 e B LR R O et ekt il R Vo agh RNy N

Results and Discussion

The results of the numerical compu~
tations are presented in an accelerating
rectangular elbow and compared gith exist-
ing experimental measuregents 19, The duct
was designed by Stanitz,“V using inviscid

avoid boundary layer separation. This
experimental data was also used for com-

The experimental measurements were obtained
for different inlet total pressure profiles

flow. The inlet total pressure profiles

Pigure 2

al grid in the xy and X,y directions. Due

+ the flow computations were
performed in the lower half of the duct
using a (9 x 13 x S5) grid in the

e 3 shows the inlet velocity profiles

The experimental msasuremunts for 2.5 inch

tween the pressure and suction surfaces are
shown in the same figure. The results of

The
flow velocities are normalized with respect
vI“x’ while

the pressures are normalized with respect
to the critical pressure, which corresponds

The orthogonal curvilinear body

developed by Davis“< which is based on the. —
The
values of the orthogonal coordinate in
the transformed plane were between 0 and 1
%y direction. The computational grid is

val to 1.875 times the
duct exit width. The convergence of the
numerical solution was fast with CPU time
of 3.5 minutes for 25 outer iterations
on AMDAHL 370, The inner iterations did
not exceed 25 in all the iterative solu-
tions for Xpt Xy and Xe solutions on all

77 surfaces.
The results are presented first for

distribution over the duct curved walls
and are compared with the experimental
measurements. Complete spanwise static
pressure distributions over the pressure
and suction surfaces of the elbow were
9, for the flow
with nominal exit Mach number of 0.26.

figures 4 and S show the computed
static pressure coefficient distribution
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uunu solution, that is
for turbomachinery applications.
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The analysis is goncnl and applicable to
flow fields with both total pressure and
total temperature gradients. The results
of the computations are presented for the
flow in an accelera rec ar elbow
with shear inlet velocity profile and 90°
curning m].o. The analysis predicts the
secondary flow development and the computed
results are in agresment with the experi-
sental measuresents in the regions wvhere
the viscous dissipation effects are not
significant.
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Appendix 4

(4
Internal Three-Dimensional Viscous Flow
solution Using the Streamlike Punction
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PN
for the numerical solution of the para- .:
bolized Mavier-Stokes eguations in primitive «.';b,.:}':f-:‘.»

ERAY Y

-

Jyarigbles for ressible f compressi- ALYy
bhﬂg; -ﬂtmi.c. lmm"sv and .;f_" ;.‘2:.-
turbulent®,’ internal flows. The only '
elliptic influence which is accounted for
in the parabolized solution is that due
to the potential pressure uolds Partially
Eabesfoentis evsiopes cor the mpmerictl
s ntly or numerica
solution of viscous flow fields in which
m-m is the dominant transmitter gt
luences in the upstream direction.

These flows are still characterized by the
absence of recirculation in the primary
flow direction and by high Peynolds number,
80 that the viscous diffusion and thermal
conduction are significant only in the
latearal direction. The solution procedure
remains for the main and lateral
nomentum equations, but the pressure
: mon equation ;:u:l::. marching step
dugt lefigth contains terms that pressure

. ’ correction in a given lateral plane to
Reynolds number tream and downstream pressure COrrec-
time tions. 1In both ntgm.fthc :;:ocity .

. components are obta rom somentum

velosity compoments ia x, y and equations, and the continuity equation is

- s ‘directions only satisfied indirectly by the pressure 2.
B velocity vhotor S tield. This indirect approach to satisfying— S
v sormelizing velocity at inlet’ the eontinuitx equation is common ‘to a].].s__, A
parabolised’~% and partially parabolized L
2,78 Cartesian ococordinates methods. o
_XgeXzrXg sStreamiike functions . The full Navier-Stokes equations are cob
v kinematic viscosity required to model flows with significant
8 separation or shear layers not aligned
vorticity vector with one of the coordinates. In addition,

methods are not suitable for obtaining
solutions to flow fields in which viscous
phenomena significantly affect pressure

n.E,¢ - vortigcity components in x, y and the parabolized and partially parabolized
e 2 directions ’

Introduction distribution. Several wethods have been
:ml.opod :or eh; -g:ution of the time
A number of numeri sethod ependgnt form of the governing equa-
have b.z:'zulopod over the “:r- for the ei""'?"io These methods can be very
solwtion of internmal ow fields. expensive, when used in the solution o
. e esarliest solutionsl=3 were obtained for Viscous three dimensional flow fields,
the peradolised Navier-Stokes equations. but have been demonstrated to predict

Sevesal suocess implicit iterative solu- COWplex three dimensional phenomena such

tion proceduzes?-? have since been devaloped 28 the horsashos vortex in turbine blade
s el passages. The numerical solution to the

3
o
~
‘w
o
h ]
N

” fun :::ady state Navier-Stokes cqua:lons RS
® pyefessor, Associste n primitive variables was reported in Py
. sofppeared i....“:. w ““::?' reference 11 for natural convection and EONENS

- ’ reference 12 for laminar flow in curved OGRS
apyiyin © Ameiens Sasiingls of Acvousuties and -\'_-_'::;7:.,5
. Antiasngtvs, e, 1904, AR Aghn sessrved. BN
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wall-known 2-D stream tuctiﬂ nc'uctty
[ ]

poten-
tion

tial to identically satisfy the
. Of osnservation of mass in three ional
flow fialds. The vector potential vorti-

been used to solve

potential and three vorticity transport
oguations. The main advantage of this
formulation, in two dimensions, namely the
saaller sise of the governing tions

. umumx‘:ﬂhm ions.
singe three-dimensionsl differential equa-
tions have to be solved for

g
&
v
§
3
i
g

simple convection problems have not been
very successful in through flow calcula-
tions. The presented work represents a
new formulation for the 3-D Navier-Stokes
eguations that leads to an elliptic
solution. The formulation is based gn the
use of the 2~D streamlike functionsl® to
identically satisfy the equation of conser-
vation gt ’III for 3=-D rotational
flows.19:17 e governing equations con-
sist of the vorticity transport equation
and 2-D Poisson egquations for the stream-
1ike functions. The present method is
very general, in that inviscid.flow solu~
tions can be obtained in the limit when
Re +» =, In fact, numerical solutions have
been obtained isr inviscid rotational

. incompressiblel® and compressiblel? flows
in curved ducts and it was demonstrated
that the method can predict significant
secondary flow and striamwise vorticity
deve t due to inlet vorticity. The
following work represents the generaliza-
tion of this formulation to internal three-
dimensional viscous flow problems.

Analysis

The governing equations consist of
the vorticity transport equation and the
eoguation of conservation of mass, which
are written in the following dimensionless

¥ - TR e - . .
R ORI a L Ry T

St Ty

S B A Ry Bt BB T B s B

~ the flow field.

A N N TR

" "

form, for incompressible viscous flow:
@0l = @-n% - L o

and
vleo

(2)

In the above equations R = V*D/v when
the velocities are normalized by V*, the
:!a/go dimensions by D and the vorticity by

The solution to the three dimsnsional
viscous flow is obtained in terms of the
three vorticity components and three stream-
like functionslS which are defined to
identically satisfy the equation of oon-
servation of mass for genersl three-
dimensional rotational flow fields. Unlike
the traditional stream function solutions AR
which must be obtained on stream surfaces, S ——
the following streamlike function velocity
relations permit the definition of these
two dimensional functions X3 (x,y), xz(y.:).

x;(x,l) on fixed non-stream surfaces in

Streamlike Functions Velocity Relations

The streamlike function, formulation
was developed by the authors*® to model
internal three dimensional flow fields.l®
More details and general definitions in
curvilinear coordinates of the streamlike
function can be found in reference 17.

For the sake of simplicity, the equations
will be presented hers for incompressible
flow using Cartesian coordinates.

Definition of 3

Xy 7 v,
3a)
W oot e (
X, L
Ix o
ﬁl «-v (3b)
Definition of X2
3X z aul
=ew, - az (4a)
LT 2 z, x
2
.5.’5‘3. - v, (4b)
Definition of X3
Xy x avz
- - g, + dx (5a)
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-%;7 o (as)

;‘ - o (16)

7)

v,
» x
] H] ]
* gregde ,;1 (18)
‘The governing equations (7)-(?) and
(13)-(13) are solved for the vorticity
components n, £, { and the streamlike
!-ctim X3r Xz and X4, respectively.
eondutonl used for the solu-

uen of these equations are gim for the
vlnm tl.ov in a square duct. Because of

< e.: of the

(¥2) duct is mlxotod the following
derivations. Th coordinate y along the
straight duct is msasured from the duct

(8) entrance, while x and z represent the
ocoordinates in the cross sectional planes

mod!xuth-m:mmlmu-m

b (9) ia rig. 1.
i of the
oy and s At the inlet station which extends far
' & 1 wupstream of the duct entrace, the flow

9 are velocity is taken to be uniform (ve=v,,
of egua- u, w=0), leading to the following

g _ vortioity bowndary conditions:
e g. H | o (10)  ana
% B-8 an ;;_;.;.;.?. =0

neg=§=0 B

' ‘.g. ‘ At the duct boundaries, the no slip condi-
e ‘ (12) tion is used to obtain the boundary condi-
* tions for the vorticity components, while

the sero flux condition is used to obtain
the boundary conditions for the streamlike
functions

. X v The streamlike function boundary
# conditions are simplified through the
: L sppropriate choice of the reference coor-

o il dinates X, 3, in the lower limit of the

integrals in oqultiono (3)=(S). The
following boundary conditions ruule when
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Besults and Discussion

( The elliptic system of equations are
T solved using an iterative procedure. At
Cs- a . ehch global iteration,; the linear equations

: . were solved by successive relaxation

[ methods. Numerical computations in a

e . sty t duct with L/DRe = 0.1 were -
; g R v to:xh using a uniform grid with per
s - iy » : Ax/DRe = Az/DRe = 0,001 and Ay/DRe = 0.0033.. AR
8 (Rl f vy &x Dus to symmetry, the computations were only BN
i ) carried out in one quarter of the duct for \5\:'_.'\-;"
RIS X3+ X3s C and § since t(x,y,3) = -n(s,y,x) RN
Xy ® L AR and x, (x,y) = -x3(s,y). Relaxation para- o pledadnd

meters of 1.6 for Xyo 1.9 for X3 and 0.4

for { and { were used in the inner itera-
tions with a convergence criteria of

€ = 1x107¢, €= 1x107°, " 1x1073,
| €8x 10-% according to the following
t*n ' . qa-uom

}z (I-:; - :,j“ <e,

and The numerical solutions required 50
Xy =0 global iterations and a CPU time of 2
: s ninutes and 13 seconds on AMDAEL 370
- e : t) are using an 11 x 11 x 14 uniform grid.
. s 0 symmatry at the p x= 0 and The overall number of iterations was 351 ¥
e - . o for the vorticity squations and 179 for the RTINS
S streamlike funct equations. The numeri- o
Mzx=0 ocal solution domain extended 1.67 diameters o
, upstream of the duct inlet, where the flow - -
a.. ) velocity wvas taken to be uniform and equal
to one. The results of the numerical
' computations are presented at y/DRe = 0.0,
fege 0o 0.0l and 0,10. The through flow contours
at the duct inlet are presented in PFig. 2.
and _ The flow development from a uniform
- -0 through velocity to the profile of Pig. 2
X3 %Xy : at the duct inlet is accompanied by lateral
flow displacements dus to the secondary
AAs=0 velocities. The secondary velocity con-
tours at the duct inlet are shown in
’ Fig. 3 for the vertical velocity component
== w. The ellipticity of the numerical solu-
tion is demonstrated in the velocity con~
Py tours at the duct inlet, and in the velo-
s =0 city fields up to 0.83 diameters upstream
of the duct inlet. PFigure 4 shows the
and contours for the secondary velocity com-
ponent, w, at y/DRe = 0,01. A comparison
X3 = X3 =0 of Figs. 3 and 4 reveals the change in
both the magnitude and the location of the
msaximum secondary velocities along the
Pully developed flow conditions are duct. The development of the secondary

appiied at the duct exit. velocity component, w, along the plane.of
symmetry, x = 0, is presented in Fig. S.
9 - ;.{ -0 One can see that the maximum secondary
) 4 velocities are found near the soliad

boundaries at the duct inlet. As the flow

E=0 : proceeds towards fully developed conditions, A
the sscondary velocities decrease and the RN
and location of the maximum values moves e
» » toward the center of the duct. The re- )
# - 5! -0 sults of the numerical computations at the e
duct exit are shown in Fig. 6 for the :.»:“ >,
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L N e Shat X, Teathes

/p = 0.0 ave showm ia Pig. 11. Ome
valges

e less
" ¢han-9.5 inside the duct near the walls.

flow veloei
m.:-o.

Pk e
{imens
Wavier-#tokes
on the streamlike~-function vorticity
formalation. The computed results for the
thres-dinsnsionsl visoous flow in a square
duot are presented and compared with

elliptic solution of
which is based

{8

experissntal msasurements. The results
demanstrate that the streamlike function
cen swocessfully model viscous effects in
the three dimensional flow field compu-

s Since the same formulation has
been successfully used in inviscid rota-
tional flows, to model secondary flow
development due to inlet shear velocity
anday the effect of curvature, one can

effectively developed to obtain efficient
numarical elliptic solutions of internal
viscous flow in curved passages.

|
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Seccadary Velocity Contours at
the Duct Inlet (y/DRe=0.00).
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S

é Fig. 4. Secondary Velocity Contours at
y/ORe = 0.01.
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Fig. 5. The Development of Secondary Plow
Velocity Profile at the Central
Plane, x = 0.0.
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N .. fig. 7. vorticity, ¢ Contours at the Duct rig. 9. Streamlike PFunctionm, X3 Contours
e Entrance (y/Dhe = 0.0). ‘ at the Duct Inlet (y/DRe = 0.0).

t rig. 8. Vorticity, T Contours at rig. 10. Streamlike Function, X3 Contours :.
*, y/ORs = 0.1. at y/DRe = 0.0l. ’ .::.
‘:y .\.

46

.:.-\;-.;_-‘- _--_-\'q..'_.c.‘- '.h.' ( ‘;-
NCOATALNOVON I AT MO AT A P

v

- - - - - a L TS - - . - .-
NG '&\ Y S A A S S W SRR SO



e o A A P VAR VT B Py % g N P P26 Al Y R WAL AT N IR e S Tt T T W N0 LN

| : © BXPERIMENTAL DATA (REP. [18])
- —— PRESENT RESULTS

- 0.5
' 0.}
*
5
0.2l g = |o.0078
%: e.1l)
0.0
- T 1 2
C : . 1 . 2
0 1 2
Pig. 11. Streamlike Punction, X, Contours at 3 = 0.
J puct Inlet
) l 0.5 Ll L L ¥ 1] o 1 4 . X 11 T Y
’ '0.3‘ ' -
0.4 C
=
,‘ 5, s
= | 9 ' 4
: ' =0.4
o ) 0.3
s . ' \ -0.3
0.1 : -0.2
# N 1 2 3 2 1 I 1 1 [ I 1 [
;"] -1.0 0.0 1.0 2-0 3.0 4.0 5.0
' y/D -
- rig. 12. Development of the Through Flow Velocity Profile at the Central -Plane x=0. "
o 2.2 0 EXPERIMENTAL DATA (REF. [18])
“T PRESENT RESULTS
. 2.0
@
' 1..
=
1.6 rig. 13. Through Flow Velocity Develop-
ment Along the Duct Centerline.
. 1.4
. 1.2}
A 2
_‘ 0.00 0.03 0.10

y/DRe

RS N AT S N1 2 %0 Y Sl A Woog A AT Iy Sel T Y T LA TR AR R L Tl W L L Sl S W)
. RN 5y ‘ut.,\y‘,.‘, oy \g .,a ;’; ,s.:, *. “}".-‘a"."\-_'? v .""\'."-,":'!’".'-\ .._.J..:.'_s' o -

[ v . .



P oot et el A N B AT N atig 2e Y TR T R S St N g ok dm el U e i & iy #

i
- - -
ISR
.i
2
] "
3
. .

. Appendix 5

) The Elliptic Solution of 3-D Internal Viscous
: PFlow Using the Streamlike Function
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. -mashinecy blade passages continues to be the subject of many
‘wvisoous asd inviscid flow studies. Recently developed 3~D
. inviscid methods [1-2] are capable of predicting 3-D flow
chaxacteristics

viscous forces, these inviscid mathods cannot predict the‘

R Ik T I B S R L . O L N T T L WY I N 3 ETY o BV g2

and 8. mnm

Applied Re(zarch Laboratory

Pennsylvania State University

State College, Pennsylvania
U.8.A.

‘#he grediction of the complex 3-D flow field in turbo-

such as secoadary flows (3]. While the
secondary flow is caused by vorticity which is produced by

vissows peoduced losses in the blade passage. Internal vis-
ocous flow solution methods have been developed using para-
bolised Navier-Stokes equations. While these methods are very
fast, their application is limited due to their inabilities
to simulate downstream blockage and strong curvaturs effects.
Partially perabolised methods maintain the advantages of the
pazabolized methods in that the streamwise diffusion of mass,
momentun and energy are still neglected but the elliptic -
influence is transmitted upstream through the pressure field.
T™hese well developed methods are not discussed here since the
reader can refer to the extensive review of Davis and Rubin (4]
and Rubin [S]. Our following discussion will be limited to
the fully elliptic methods for the solution of the 3-D
Mavier-Stokes equations for intarnal flows.

Agiz and Nellums [6) developed the vector potential-
vorticity formulation, and used it to solve the problem of
laminar natural convection.. This approach is an extension of
the well known 2-D stream function vorticity formulation to
3=D problems. The equation of conservation of mass. is iden-
tically satisfied through the definition of the vector
potential. In this formulation, the resulting governing
equations consist of three 3-D Poisson equations for the
vector potential and three: vorticity transport equations.
Williams {7]) used a time marching method for the solution of
the laminar incompressible flow field due to thermal convection

49
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m with Neumenn boundary conditions. Both
Fafore require t 2 solution of three para-
eguations. The first method requires in

kion of the 3-D Poisson equations with

itions alony the third boundary, while
llltdonzvs-broum egquation for

) = !hm mt:loa for the viscous velocity
mint is gbtained from the momentum equation with
o m oxpressed in terms of the derivatives
L& - Al vector component, while the govern-

lag sgmtion for the velocity potential vector component
e sined from continuity. Beyond this formulation,
L 'm"# mtmarical solution procedure is partially parabolic
‘ d.llﬂlh neglested the streamwise diffusion of momentum in
nikag a sarehing sclution for the viscous velocity com-
‘poments. The analysis itself, in terms of the type of the
o - governing equations and their boundary conditions, is com-
paxabls to the wsliocity pressure formulation since the govern-
ing eguation for the velocity potential is a 3-D Poisson

mmmeumampomuug:uunemmw
the wall in his numerical solution. Other formulations that
oan lead to elliptic solution, were described in references
(S] and (8], however they will not be discussed here since
they have not yet been applied to 3-D flow computations.

In susmary, existing elliptic solvers for the Navier-
Stokes equations require the solution of one or three 3-D

thres vorticity transport equations. In the case of the
e : velocity pressure formulation, the velocity vector is evalu-
‘ - fiom the momentum equation and the continuity equation
is satisfied indirectly in the pressure equation. The con-~
vergence of the iterstive numerical procedure would be very

i
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th Swsenn boundary conditions for the
the other hand, the continuity equation
Ml o three 3-D Poisscn equations for
ons. | Convergence of the iterative
s in this case, since Dirichlet
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; ‘mumber (lo-—!' appears in the equations as

'_-zammvuocsuuwvﬂ,mw
nbmmmueuybyv'/n. where v is the

‘l
>

A
RN
s

- e.v, soﬁvu + 3= ¥n | - (4.

B vigedowelv )

* ® « Fevg 4 fetvw 4 -:-.- vi; ) )

'fﬁf.‘uhmu.t‘:mmmuotmmueuy vector, &, ia
U Xy rﬂsd&m&m. :upocumy: u,v,w are the

n
nefE-g (8
(= %5 - %} (9
(L % - % | (10)
Three stremmlike functions [12] x, (x,¥), X, (¥,2), X (x,2)
are defined to identically satisfy the equation of conserva-
tion of mase in the case of internal rotational flows [13,
14). The velooity field is determined from the stzunliko P
functions according to the following relations: r‘}'\;.,
RN
R
5 A
& " ‘
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(11)

(12)

v hE

s lRe as
| !&"*;5"3 ? ;;!" - | (1s)

"",ua-;;l{ I§ éa , (16)

M}&‘mm vuemutosohumonm
vertivil and ovess-sectional planes respectively

Q-qh-o-u.p v-vh#v' and v-v'nve (17)

m (11-17) satisfy the equation of conservation of
‘mass (7) ideatically, , oL e T

mm equatiocns (11)- (17)&&0 equations (8)-(10)

.’.? .;l.; .;.%;lo;.:-!q, (18)

3 ds (19)

/
. =0
‘ 2 2
) ? ] R z 3
) 2 b
—;’-* “f -+ Todx-= [ —=lde
- e = T . 'uio s a":z£0 x. (20)
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(21)
(22)

(23)

nlmccmmmmqimtor
ﬂwhnmm The inlet station is
 upetrean vhere wniforn incoming flow is assumad
» suse simulates flow in cascades with zero
Poriodic conditions apply over the extended
. entrance. Because of symmetry,
of the square duct is considered in the
boundary conditions. The coordinates
from the duct centerline and y from
shown in Pig. 1.
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Pig. 1. A Schematic of the Duct with Cascade Entrance.
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Figure 3 shows the boundary conditions for the stream-
1ike funstions st the extension of the duct boundaries.
* g conditions at the plahes of symmetry are unchanged.
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Pigure S
3. IESULTS AND DISCUSSION

The results of the numerical computations are presented
in one guarter of a square duct.  In this case, only two of

stzeamlike function equations [egs. (19) and (20)] are solved,
since Xy = Xy and {(x,y,8) ==-n(s,y,x). Referring to Fig.l, the

solution was obtained for Re = 50 in a duct with L/DRe = 0.1
and Le/DRs = 0.01 using SOR and a (11 x 11 x 34) grid.

Figures S6a and €b show the through ‘flow velocity contours
at the duct entrance and exit. The influence of the cascade
entering on the elliptic solution is demonstrated in contours
of rig. Ga.

The coantours for the secondary velocity component, w, .
are shown at y/DRe = 0,0 and 0.,0075° 4in Figs. 7a and 7b.
From these figures, one can see a large change in both the
sagnitude and the location of the maximum secondary velocities
duct. The development of the through flow velocity
grofiles along the plane of symmetry, x = 0, is_shown in
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Fig. Ga. Through Flow Velocity Contours at the Duct
: ntrance.
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Fig. 6b. Through Flow Velocity Contours at the Duct Exit
» (y/oRa = 0.1).
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ks of refexence [16]. One can see that the computed
,u are in good agreement with the experimental measure-
. M-o.mmo‘oz.mm:mmm

orw

2
. 1 . 2 . .
% rig. 8. Develogment of the Through Flow Velocity Profile

at the Central Plane x = 0.

Figure 9 shows the development of the secondary velocity
.w. v, along the duct plane of symmetry, x = 0.

" experimsntal measuremcnts are available for comparison .
with the computed secondary velocities. Figure 9 shows that = .-. - -
the saximm secondary flow is initially located near the
s0lid houndaries, then moves towards the center of the duct
and decreases as the flow proceeds towards fully developed
conlditions. The computed through flow velocity development
aloay the duct centerline are compared with the experimental
measurensnts of reference [16] in Pig. 10. One can see in
this figure that the elliptic solution predicts an increase
in the centerline through flow velocity in the cascade entry
tegion preceding the actual duct entry. Figure 10 shows that
the computations slightly underestimate the centerline
velocity. Considering the coarse grid used in the numerical
muom [(11x11x34) grid points in the duct], the
agreament of the computed results with the experimental data
as shown in Pigures 8 and 10 is very satisfactory.
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Fig. 9. The Development of Secondary Flow Velocity Profile
at the Central Plane x = 0.
: 0 EXPERIMENTAL DATA (REP. (16])
' 2.2 o~ PRESENT RESULTS
[ ]
2. ) -
v 1.8p
U ad
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1.4 '
. 1.2
::’;‘- . [ i |
i -0.08 0.00 0.05 0.10
5 y/DRe

Fig. 10. Through Plow Velocity Development Along the
Duct Centerline.
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nts & fast efficient method for the 3-D
) ﬂn Bavier-Stokes egquations. It is based
function vorticity formulation which leads
m with Dirichlet boundary conditions
snlike functions, in addition to the
mu The mathod is more economical
slliptic solvers, yet does not
- parabolized and paratially para-
It offers a useful tool for the numerical
) internal viscous flow fields wherse surface
downstréan effects are significant, as in turbine
The resuits of the computations are presented
£flow in a constant area duct, as a corner
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Appendix 6

LVD Measurements of Three-Dimensional Flow
Development in a Curved Rectangular Duct
3 with Inlet Shear Profile
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) velocity
tudes up to 0.23 of
in the 90° turning
duot. .

ow by the same secondary veloci-
ties. These cross velocities are assocti-
ated with the secondary velocity develop~
ment in the streamwise direction through
the turning of the flow with nonuniform
inlet conditions in the blade passages.

.Secondary flow in compressor and
turbine cascades has bsen the subject of
several theoretical and experimental
investigations. In most of the experi-
sgntal secondary flow investigations, the
flow measuresments have been limited to

vide empirical correlstions for secondary
flow losses and exit flow angles.

ucnl obtained detailed measure-

. Several investigators measured the
developmant. of secondary flow in curved

m“' from a fully developed inlet

'® professor; Associste Fellow AIAA. *
“draduate Research Assistant; Student
Menber AIAA.

Cappeigit © Asswtums dastitute of Acronautics and
Astpensatie, dun., 1980, All rights reserved.
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LV MEASURBMENTS OF THREE-DIMENSIONAL FLOW DMLGPH!NT IN A
CURVED RECTANGULAR DUCT WITH INLET SHEAR PROFILE

A M. and M. lllllk’.

Department of Aoz::fuo Engineering and Applied Mechanics
versity of Cincinnati
Cincinnati, Ohio 45221

velocity profile. These studies demon-~
strate the secondary flow development in
the absence of added complexities of the
cascade blade leading edges.

In the presant work detailed measure-
ment of the three flow velocity components
are obtained in a curved duct with a nearly
linear shear flow inlet profile produced
us a grid of parallel rods with varying
spacing. Under these conditions, the
development of the secondary velocities
agsociated with the passage vortex is not
limited to the boundary layer region near
the wall, but extends instead through the
whole passage sections. The experimental
measurengnts of this complex flow field
are based on the use of a two-color back
scatter Laser Doppler Velocimeter.

EXPERIMENTAL SET-UP

The experimental set-up is shown
schematically in Pig. 1. It consists of
the tunnel, the seeding particle atomizer,
the LDV, optical and data acquisition
systems.

Tunnel

The high pressure air supply from the
storage tanks is regulated to a lower
pressure before entering the 12% diameter
Settling chamber, A 1.5" thick honeycomb of
0.187" cell and 0.003" wall thickness is
placed in a 4" diameter PVC tubs to R S
condition the flow. The latter exterds
18" inside the chamber and blends smoothly
into a 22.75" long rectangular channel
preceding the curved duct. The duct is
shown schematically in Fig. 2 and consists
of a 90° bend of 6" mean radius and a
2" x 4" rectangular cross-section. The
duct walls are made of plexiglass. The
thickness of the curved wall is equal to
1/8" while the plane walls are 3/4" thick.
The curved duct is connected to straight
ducts downstream and upstream where the
shear flow is produced using a grid of
parallel rods with varying spacing. The
grid imposes a resistance to the flow that
varies across the section so as to produce
vaiiation in the flow veiocity, without
iatroducing an appreciable gradient in
static pressure. The basic relations
between rod size, spacing and the produced
velocity gradient were derived first by
Owen and Zienkiewicsz 9ulm! modified later
by Livesey and Turner? and by Elderi0 for
more generalized profiles. The basic
relations for a grid to generate a uniform
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&re given by the following €quUAT  curved wall. Finally the mountings of the
L L sending and receiving optics are designed
% .\}*) " (1)  to allow for rotation around the optical

axis up to 90°, in order to obtain

7 2§
Ehe'] k
S

{

(o

- the msasurements of the two velocity }“ .-"':é
components in any specified direction. AR
3

¥,
2 »
n o]
.{‘l
£

TaLE L R
STICS ,
Blue © Green
J the al Wavel 0.448 0.5145
A uniform velocity ' ength w e

Fringe spacing 2.534 ym  2.672 um

Diameter of measur g
volume at the 1/e~2 0.1045 nm 0.1097 mm
intensity locationm,

length of uuu:in,
volume at the 1/¢°% 1.08 mm 1.13¢ mm
intensity location,

Rusber of stationary
fringes a Y} §

m;:l,qul processors and a DIGI‘.I'AI';O MINC
3 $0 & 1 were used on line to a

t1stes of 3 et evmaironisad Sata 1or the simultutesss
particles/cm

bS5 ! measurements of the two velocity components.
' was gommected to the back of
| shamber through a flexible " RESULTS AND DISCUSSION
* diansterx. _ e

The high pressure air supply from air

stoy tanks gn r!gmud to a pressure

- of 2.0684 x 10° B/m¢ gauge (30 psig) atthe
orifice meter, using a pressure regulating
valve, to give an air mass flow of 0.1l143
ky/sec (0.252 1b/sec). This corresponds
to Reynolds number of 1.3 x 105, based on
theheight of the duct and the mean inlet
velocity of 20 m/sec (66 ft/sec), upstream
of the shear velocity gensrator. .

The experimental velocity measurements
were obtained at sections B, C, D and E as
shown in Pig. 2. Sections C and D are
located in the curved duct at the 45° and
75°© turning angles, while the first and
last measuring stations B and B are located
in the straight portions of the tunnel. A
quarter inch s between the measuring
points in the radial direction and also in

the direction normal to the duct plane -::,-’:""‘ AN
walls was kept in the measurements at all PR E RS
four cross sections. The velocity measure- v‘“".'\e s
ments were, thersfore, obtained at 105 PIOD 3
poiats of a 7 x 185 grid in every section. R R
In order to determine the three velocity BTy

components at each measuring point the
msagsurements were obtained once with the
Laser-optics axis perpendicular to the duct
plane wall, then repeated with the Laser-
optics axis perpendicular to the curved
wall., The first set of measurements
provided the through flow velocity U, in
the direction normal to the tunnel cross-
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sections, and the radial velocity compo-
nents, V., while the second set of measure-
ments gi.g the third velocity component
and .al80 the flow ve ty O.

. through flow ve ties from the two sets
' of nsasuremants vere to determine
‘the repeatability of the data after the

- duct is rotated 90° xelative to the settl-
ing chamber. The difference between these
two values was not found to exceed 3,38 in

normalized with re-
spact to the mean flow velocity Up, up-~
stream of the shear generating grid, are -
ted in Pigures 4 through 1l1.

The profiles of the normalised throughi:
flow velocity (U/Up) are presented atseven.
conoentric cyclindrical surfaces between
the duct ianer and ocuter curved walls at
sections B, C, D and B in figures 4, 5, 6
shear generating yiid produced the desired
s genera gr red -
lirdear velocity variation in the z direct-
ion except in the region near the upper
vall where the velocity gradieat is higher,
This deviation was due to the influence of
the distance of the last grid wire from the
upper wall. This factor was not found to
have significant effect near the lower wall
where the wire grid spacings are smaller,
Other shear velocity generating gridswith
different wire diameterxs (0.039" and 0.125%)
have besn investigatsd. The forementioned
effect was even more pronocunced in the
case of larger wire diameter grid. On the
other hand, the velocity profiels produced
by the grids of the smaller wire diameter
were found to produce velocity variations
along the wire length. Careful examina-
tion of the grid revealed non-uniformities
in the wire spacings in this direction,
which was found difficult to control,
Pigures 5 through 7 demonstrate the change -
!+ the through flow velocity profile with
the duct turning angle. Initially, the flow’

2

accelerates along the inner wall and decel- -

erates along the outer wall to approach po-
tential free vortax velocity distribution.
This can be seen by comparing the velocity
profiles in Pigures & and 3, at x = 1.73"
and x = 0.23" respectively. Later on the
flow decelerates along the inner wall and
accelerates along the ocuter wall. This
pattern is reinforced by the secondary flow
velocity development, which tend to trans~
fer the slower moving flow towards the in-
ner wall as can be seen by comparing the
profiles at x = 1.75" in Figures 6 and 7.

The zrotuu of the normalized second-
ary velocity in the radial direction wx’"b’
are also presented at seven concentric
cylindrical surfaces which are equally
spaced at 0.25" between the inner and outer -
cusved walls of the duct. Pigure § éombines
all the profiles at sections C,D and E, as
the LOV mesasurements did not indicate any
significant secondary velocities at section
B. On the other hand, the profiles for the
normalised secondary velocity for the
normeliszsed secondary velocity in the verti-
cal dizection wy/ub’ are presented at 1S5 _

70
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~in Pig. 9.

* measured at section E-E and were found to

. increases from 452 to 90° between sections
i C m '. \

. flow turning angle.
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parallel planes which are equally spaced at
0.25" between the duct plane walls as shown
The same symbols which were
used for the through flow velocity profiles
at sections C, D and E are slso maintained
in presenting the measured secondary veloc-
.ities in Pigures 8 and 9. The vertical com-
‘ponent of the secondary velocity, V., was
not measured at section D-D, due to“the
deterioration of the quality of the duct
curved outer wall after obtaining the
measurements at the other sections. The
maximum secondary velocity components were

‘be 0.264 in the radially inward direction
near the duct upper wall and 0.138 in the
vertically upward direction near the duct
inner wall. These values are also nor-
‘malized by the inlet flow velocity, Uy,
‘before the shear generating grid.

! The two measured secondary velooity
components were combined to produce the
secondary flow patterns at sections C and
B which are shown in Pigures 10 and 11,
tespectively., From these figures the
development of the passage vortex due to
the nearly linear shear inlet flow profile
can be observed throughout the duct cross-
sections. The sacondary velocities assoc-
iated with this vortex tend to move the
slower flow in the lower duct sections
towards the inner curved wall and the

faster flow in the upper duct sections, to-
wards the outer curved wall. One can see
from Gig. 10 that, the center of the pass-
age vortex at the 45° turning angle is
nearly in the middle between the inner and
outer curved walls but closer to the duct
upper wall at Y = 0,62h. A close examin-
ation of Figures 10 and 11 reveals that the
centsr of the passage vortex moves towards
the duct lower wall and also in the outward
radial direction as the flow turning angles

CONCLUSIONS

LDV measursments were presented for
the three velocity components of the flow
in a rectangular curved duct with shear
inlet velocity profile. Secondary veloci-
ties of magnitudes greater than 25% of the
main velocity, wers measured after the 90°
The results demonstr-
ate the passage vortex dovclor-ne thxough=
out the duct cross-sections with the flow
turning angles. Thess experimental results,
can therefore be used to validate both
viscous and inviscid codes for internal
three dimensional rotational flow fields.
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